RSS

Category Archives: gorilla

Chromosome scale evolution among Hominidae (great apes, humans)

I won’t surely be able to make justice here to this most interesting but highly technical paper but mention must be done of it in any case:
Marta Farré et al., Recombination Rates and Genomic Shuffling in Human and Chimpanzee—A New Twist in the Chromosomal Speciation Theory. Molecular Biology and Evolution, 2012. Open accessLINK [doi: 10.1093/molbev/mss272]

Abstract

A long-standing question in evolutionary biology concerns the effect of recombination in shaping the genomic architecture of organisms and, in particular, how this impacts the speciation process. Despite efforts employed in the last decade, the role of chromosomal reorganizations in the human–chimpanzee speciation process remains unresolved. Through whole-genome comparisons, we have analyzed the genome-wide impact of genomic shuffling in the distribution of human recombination rates during the human–chimpanzee speciation process. We have constructed a highly refined map of the reorganizations and evolutionary breakpoint regions in the human and chimpanzee genomes based on orthologous genes and genome sequence alignments. The analysis of the most recent human and chimpanzee recombination maps inferred from genome-wide single-nucleotide polymorphism data revealed that the standardized recombination rate was significantly lower in rearranged than in collinear chromosomes. In fact, rearranged chromosomes presented significantly lower recombination rates than chromosomes that have been maintained since the ancestor of great apes, and this was related with the lineage in which they become fixed. Importantly, inverted regions had lower recombination rates than collinear and noninverted regions, independently of the effect of centromeres. Our observations have implications for the chromosomal speciation theory, providing new evidences for the contribution of inversions in suppressing recombination in mammals. 

Maybe most interesting, at least for the casual reader, is this graph:

Fig. 1.

Evolutionary history of human chromosomes superimposed on the phylogeny of great apes. Black lines within the phylogenetic tree represent the ancestral state of the chromosomes, whereas red and orange lines represent the rearranged forms. Orangutan maintains the ancestral form for orthologous chromosomes 3 and 11, whereas human, chimpanzee, and gorilla forms are derived. Orthologous chromosomes 1, 2, and 18 have been rearranged in the lineage leading to humans, whereas orthologous chromosomes 4, 9, 15, 16, and 17 are rearranged in the lineage leading to chimpanzee. Ancestral chromosome 5 has been maintained in orangutan and human but has suffered two independent inversions in chimpanzee and gorilla, respectively. Chromosome 7 has suffered one inversion, which has been fixed in gorilla, and another inversion has been fixed in the lineage leading to human and chimpanzee. Chromosome 10 underwent one inversion that was fixed in human and chimpanzee, and a new inversion fixed in gorilla. Finally, chromosome 12 has maintained the ancestral form in humans and orangutans but has undergone an inversion that has been fixed in chimpanzee and gorilla, therefore, the polymorphic state has persisted across multiple speciation nodes (gorilla–human–chimpanzee and human–chimp).

large original version

No changes at this scale happened in the other eight autosomes (6, 8, 13, 14, 19, 20, 21, and 22) in any of the four genera. 
Warning must be done about the timeline, which should be twice as old at least for the Pan-Homo split.
It is interesting to notice that Pan (chimpanzee) and Gorilla share a derived form of the chromosome 12, indicating that the Homininae split was not too clean, possibly with gorilla introgression into chimpanzees. 
It is also interesting to realize that orangutans (Pongo) are extremely conservative in the genome (all 22 chromosomes, what means that surely the common ancestor of all Hominidae was more similar to modern orangutans than to any other branch. 
Finally I find notable that our chimpanzee cousins are actually more evolved than us, literally, a blunt numerical truth that is strongly counterintuitive for our anthropocentric vision of biology and evolution. While us humans have conserved 15 ancestral chromosomes (almost as many as gorillas: 16), chimpanzees only conserved 11, evolving one step (red lines) 9 chromosomes (humans 6, gorillas 5) and two steps (orange lines) two chromosomes (humans and gorillas just one).

PS- On the other hand, our Homo branch has a peculiar chromosomal rearrangement that puts up quite apart from the rest of Hominidae: two ancestral chromosomes got fused into a single one (chromosome 2) in our line. This may well have been decisive in our reproductive divergence from Pan and even maybe Gorilla, crafting a very impassable biological barrier. (Not in the paper, just my afterthought).

Incidentally, a 2006 study (Wainwright 2006) claimed to have found some strong correlation between cognitive abilities (not just IQ but also other more creative aspects of the mind) and areas of chromosome 2. With the usual caution I guess it is worth mentioning here.

 
 

Hominid speciation: sudden or gradual?

It depends apparently: bonobos may have diverged quite suddenly while in other cases, including the Pan-Homo split, the process of speciation appears to have been more gradual.

Thomas Mailund et al., A New Isolation with Migration Model along Complete Genomes Infers Very Different Divergence Processes among Closely Related Great Ape Species. PLoS ONE 2012. Open access LINK [doi:10.1371/journal.pgen.1003125]

Abstract

We present a hidden Markov model (HMM) for inferring gradual isolation
between two populations during speciation, modelled as a time interval
with restricted gene flow. The HMM describes the history of adjacent
nucleotides in two genomic sequences, such that the nucleotides can be
separated by recombination, can migrate between populations, or can
coalesce at variable time points, all dependent on the parameters of the
model, which are the effective population sizes, splitting times,
recombination rate, and migration rate. We show by extensive simulations
that the HMM can accurately infer all parameters except the
recombination rate, which is biased downwards. Inference is robust to
variation in the mutation rate and the recombination rate over the
sequence and also robust to unknown phase of genomes unless they are
very closely related. We provide a test for whether divergence is
gradual or instantaneous, and we apply the model to three key divergence
processes in great apes: (a) the bonobo and common chimpanzee, (b) the
eastern and western gorilla, and (c) the Sumatran and Bornean
orang-utan. We find that the bonobo and chimpanzee appear to have
undergone a clear split, whereas the divergence processes of the gorilla
and orang-utan species occurred over several hundred thousands years
with gene flow stopping quite recently. We also apply the model to the Homo/Pan speciation event and find that the most likely scenario involves an extended period of gene flow during speciation.

 
 

Gorilla genome sequenced

Kamilah the gorilla
The full genome of Kamilah, a female gorilla from San Diego zoo, has been sequenced. With this one all extant great apes, excepted the bonobo, have been fully sequenced.
The authors propose a divergence of Gorilla from the Pan-Homo branch c. 10 million years ago. But this is based on a most unlikely assumption of Pan-Homo divergence happening only 6 million years ago, when it’s surely of at least 8 million years (and maybe as many as 10 million). A corrected estimate for the Gorilla branch could then be between 13 to 18 million years in fact. 
See on this regard:
 
4 Comments

Posted by on March 8, 2012 in Genetics, gorilla, human evolution