RSS

Category Archives: Homo heidelbergensis

Neanderthals, Denisovans and everything else

A recent analysis of the nuclear DNA of a Neanderthal toe from Altai has caused widespread interest.
Kay Prüffer et al., The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 2013. Pay per viewLINK [doi:10.1038/nature12886]
The story of a finger and a toe
Both the Denisovan and Neanderthal DNA sequences discussed in this paper come from small bones found at the same location: Denisova cave, Altai Republic. The Denisovan sequence that revolutionized human paleogenetics a few years ago corresponds to a finger phalanx bone of some 50,000 years ago. The less notorious Neanderthal sequence discussed in this study corresponds to a toe imal phalanx, which was found in a lower layer in the same gallery of the same cave, and hence should be older.
This is very interesting to underscore because it seems to imply that Neanderthals were in Altai and specifically in Denisova cave very early, at dates similar to those we find in West Asia (Tabun excepted) and they may even be older than Denisovans in the very cave that gave them their name.
The toe sequence was found in a previous study to have Neanderthal mtDNA, closely related to the lineages of European Neanderthals of various dates and sites. Instead the finger mtDNA (Denisovan) was derived from a more ancient branch of humankind than the very point of split between Neanderthals and modern humans (H. sapiens) and has been recently shown to be related to European H. heidelbergensis from Atapuerca
Notes in red are mine.
This study focuses on the autosomal DNA of both Neanderthals and Denisovans. Unlike mtDNA, whose phylogenetic position is simple and quite straightforward, autosomal or nuclear DNA (nDNA) is extremely much more complex to understand because of its recombining nature, requiring of statistical approaches, which may get extremely complex and potentially subject to premise biases. When comparing two individuals this gets largely simplified but it is a lot more complex when doing the same with larger samples.
And that is precisely what this study does: comparing one Denisovan, several Neanderthals and also several modern humans. Therefore it is a very complex paper and the authors necessarily assume some evaluation risks, which nevertheless are discussed in depth in the supplemental material, a methodology of the Pääbo team that we can’t but greatly appreciate.
Age estimates
The study makes two age estimates, one based on a very conservative and truly unbelievable Pan-Homo split date of 6.5 Ma BP and the other based on observed per generation mutation rates, which happens to be perfectly coincident with a Pan-Homo split of 13 Ma BP, the oldest extreme of Langergraber’s estimate. This coincidence alone is of enough relevance for all molecular clock approaches, because it effectively demands the doubling of all age estimates based on the ridiculously short 6.5 Ma Pan-Homo split supposition. 
Red outlines are mine. Click to enlarge.
It also produces a semi-reasonable San-West African age estimate of c. 86-130 Ka, although I would think it a bit older in fact or at the very least at the top end. This highlights the severe difficulties of such molecular clock estimates, because a 4 Ma divergence between the alleged introgressing mystery archaic in the Denisovan genome, seems out of the question according on the archaeological and paleontological record, which only documents Homo species since c. 2 Ma ago, half that time (within the estimate but clearly very far from the top end).
Altai Neanderthal inbreeding
An important finding of this study is that the studied individual was extremely inbred, with parents in effective relationship comparable to that of grandparent and grandchild or half siblings. This inbreeding tendency, even if extreme, is not so strange in populations that have experienced founder effect bottlenecks and small population sizes. The Denisovan and the modern human Karitiana people are not so extreme but range in the lower end of double first cousins level of genetic relationship between the parents. Other Native Americans like the Mixe are close to that range, while the other compared populations, Papuans and Sardinians, show much lower levels of inbreeding.
Whatever we may think of Altai Neanderthal inbreeding, their drift parameter is still very low when compared with European Neanderthals. This is not discussed in the paper but such extreme drift also seems to imply extreme inbreeding issues in European Neanderthals, even if these may have other causes such as an extremely strong founder effect or whatever.
Bonobo-specific segments were removed, so the bonobo position is not realistic.
Inferred population history
Both populations leading to the Altai Neanderthal and Denisovans, but not modern humans, appear to have gone through a strong decline in population size since hundreds of millennia ago. The Denisovan decline seems to begin c. 800 Ka ago while the Neanderthal one may have begun c. 500 Ka ago. While this is coincident with a general expansion of the H. sapiens branch (still undifferentiated in Africa), peaking around c. 250 Ka ago before differentiation and relative decline. In their words:

All genomes analysed show evidence of a reduction in population size that occurred sometime before 1.0 million years ago. Subsequently, the population ancestral to present-day humans increased in size,whereas the Altai and Denisovan ancestral populations decreased further in size. It is thus clear that the demographic histories of both archaic populations differ substantially from that of present-day humans.

Neanderthal and Denisovan admixture in modern humans

The new tests confirm in essence the previous findings: there is significant Neanderthal introgression in modern humans descending from the migrants out of Africa and there is also significant Denisovan one among Australasian populations.

Additionally and with some caution, the authors think that much lesser Denisovan introgression (of around 0.2%) is found among East Asians and that these, as well as Native Americans, show slightly more Neanderthal admixture than West Eurasians. In my understanding this may be caused by minor African flow to West Eurasia after the admixture event (and/or residual “First Arabian” persistence) and I would think that measuring South Asians would help to clarify this issue (because African admixture is negligible in the subcontinent but they are also distinct from East Asians).

These measurements are so weak that the authors agree to all kind of cautions about them in any case.

In addition to all this, the supplemental material (section 13) also detects tiny, almost homeopathic, amounts of Neanderthal gene flow to Yorubas (~0.02%), obviously mediated by H. sapiens backflow from Asia and Europe into parts of Africa, which eventually influenced other African populations. An even more diluted amount may also be present among the Mbuti Pygmies.

Altai Neanderthal admixture in Denisovans

This issue is not really explained in the paper as such, and we have to reach out to the Supplemental Information chapter 15 in order to grasp it.

It is clear that the Altai Neanderthals are closer to Denisovans than other Neanderthals are by approx. the following fractions (directly deduced from the raw affinities listed in fig. S6a.2):

  • 2% more than Mezhmaiskaya
  • 7% more than Vindija (avg.)
  • 9% more than El Sidrón
Feldhofer appears closer instead but this sequence was not used by the authors in most tests because it has too dubious quality.

In section 15 of the supplementary material, using complex methodology and lamenting the lack of a second Denisovan sample which would be most useful, they estimate a minimal 0.5% (Altai) Neanderthal introgression in Denisovans, with strong warnings that this could well be quite higher. I don’t know why they are not even considering a more direct approach, but I would dare to guesstimate the introgression to be close to 8% from the above raw data, assuming that there are no further complexities at play, such as other Heidelbergensis introgression in European Neanderthals, etc. The drift parameter (see above) does not seem to be one such complexity because Mezhmaiskaya is almost as drifted as Vindija yet it is consistently much closer, as it seems to correspond to its specific relatedness to Altai Neanderthals in mtDNA (and possibly also in nDNA if it is admixture what causes their pseudo-tree positioning closer to the root, what would be typical).

Note in blue is mine.

Mystery archaic genetic flow into Denisovans

The authors find that some 0.5-8% of the Denisovan genome appears to come from another hominin, which split from the human trunk even earlier.

We caution that these analyses make several simplifying assumptions. Despite these limitations, we show that the Denisova genome harbors a component that derives from a population that lived before the separation of Neanderthals, Denisovans and modern humans. This component may be present due to gene flow, or to a more complex population history such as ancient population structure maintaining a larger proportion of ancestral alleles in the ancestors of Denisovans over hundreds of thousands of years.


Later in the discussion section they ponder further the implications of this finding:

The evidence suggestive of gene flow into Denisovans from an unknown hominin is interesting. The estimated age of 0.9 to 4 million years for the population split of this unknown hominin from the modern human lineage is compatible with a model where this unknown hominin contributed its mtDNA to Denisovans since the Denisovan mtDNA diverged from the mtDNA of the other hominins about 0.7–1.3 million years ago41. The estimated population split time is also compatible with the possibility that this unknown hominin was what is known from the fossil record as Homo erectus. This group started to spread out of Africa around 1.8 million years ago42, but Asian and African H. erectus populations may have become finally separated only about one million years ago43. However, further work is necessary to establish if and how this gene flow event occurred.


Going to the detail of the matter (i.e. supplemental material sections 16a and 16b), one of the key details is that present-day Africans share more derived alleles with Neanderthals than with Denisovans. This can only be explained because Denisovans have other archaic ancestry prior to their apparent divergence from Neanderthals or (what is about the same) because Denisovans diverged themselves prior to the Neanderthal-Sapiens split, what is what the mtDNA (unlike the nDNA) suggests. However the difference, even if consistent across comparisons, is too small (a few percentage points) to be attributed to the later scenario.

This means that Denisovans appear to be at nDNA level some sort of an independent branch of proto-Neanderthals with some other but minor archaic admixture. Instead at mtDNA level they appear to be unrelated to Neanderthals and related instead to H. heidelbergensis (a detail not discussed in this paper because it is a too recent independent discovery).

There are still many details to explore but, in principle, it would seem that the Denisovan branch appears to be a divergent proto-Neanderthal one (maybe related to the Hathnora hominin, which looks very much Neanderthal) with lesser other archaic (H. heidelbergensis?) admixture, which nevertheless remained prominent in their mtDNA for whatever accidental reason.

Whether the H. heidelbergensis population of Atapuerca responds to this same profile (i.e. they were Denisovans too) or belongs instead to the “other archaic” population which introgressed in the Denisovan genome remains to be solved. So far we only know the mitochondrial lineage and this one may be misleading, as seems to be the case with the Denisova hominin.

Note in red is mine

Modern human genetic evolution

Benefiting from the high quality of the archaic genomes of Altai, the authors cataloged a long list of simple mutations exclusive to our species: 31,389 single nucleotide substitutions and 4,113 short insertions and deletions (indels). Additionally they found other 105,757 substitutions and 3,900 indels shared by 90% of their modern human sample of 1094 individuals.

They suggest some lines for future research in this regard, maybe focusing on genes known to influence brain development or regions that could show signs of positive selection. These preliminary lines of research are explored in SI-20, noticing potential selection in genes that affect the ventricular zone of the brain and cell proliferation in fetal brain development.

Advertisements
 

The Denisovans were not alone

H. heidelbergensis from Atapuerca
Cranium 5 “Miguelón”
(CC by José Manuel Benito)
About half an hour ago, somewhat cryptic comments in this blog and my email woke me up, more abruptly than I would have desired maybe, to a new game-breaking finding: researchers have sequenced the mtDNA of a 400,000 years old Homo heidelbergensis from Atapuerca (Iberian Peninsula, Europe) and it was not at all like most would have expected.
Mathhias Mayer et al., A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature 2013. Pay per viewLINK [doi:10.1038/nature12788]

Abstract

Excavations of a complex of caves in the Sierra de Atapuerca in northern Spain have unearthed hominin fossils that range in age from the early Pleistocene to the Holocene1. One of these sites, the ‘Sima de los Huesos’ (‘pit of bones’), has yielded the world’s largest assemblage of Middle Pleistocene hominin fossils2, 3, consisting of at least 28 individuals4 dated to over 300,000 years ago5. The skeletal remains share a number of morphological features with fossils classified as Homo heidelbergensis and also display distinct Neanderthal-derived traits6, 7, 8. Here we determine an almost complete mitochondrial genome sequence of a hominin from Sima de los Huesos and show that it is closely related to the lineage leading to mitochondrial genomes of Denisovans9, 10, an eastern Eurasian sister group to Neanderthals. Our results pave the way for DNA research on hominins from the Middle Pleistocene.

The key figure is this one, which phylogenetically relates the newly sequenced mtDNA with the known Homo ones:

Figure 4: Bayesian phylogenetic tree of hominin mitochondrial relationships based on the Sima de los Huesos mtDNA sequence determined using the inclusive filtering criteria.
All nodes connecting the denoted hominin groups are supported with posterior probability of 1. The tree was rooted using chimpanzee and bonobo mtDNA genomes. The scale bar denotes substitutions per site.

It has been argued by all sides (myself included) that the H. heidelbergensis of Atapuerca and other European locations are ancestral to Neanderthals. Some say that also to H. sapiens, while others argue that ours is a wholly distinct line, derived from H. rhodesiensis, and yet others claim that H. rhodesiensis is not different from H. heidelbergensis in spite of being older and rooted, it seems, in South Africa.
The clear evidence for migrations out of Africa, before our species, is limited to two periods: (1) the c. 1.8 Ma old migration of H. erectus/georgicus with Olduwayan technology (mode 1, “choppers”), and (2) the c. 1 Ma old migration of H. ergaster/antecessor (sometimes also confusingly called H. erectus) with Acheulean technology (mode 2, typically “hand axes”). Archaeological evidence for later migrations does not exist.
See: Late human evolution maps at Leherensuge.
So we could well ask, if H. heidelbergensis is not ancestral to Neanderthals, then where do Neanderthals come from?
It must be answered that we do not know yet if H. heidelbergensis is or not ancestral to Neanderthals or in what degree it is. The mitochodrial (maternal) lineage may well be misleading in this sense. Denisovans themselves were much more related to Neanderthals via autosomal (nuclear) DNA than the mtDNA, so it may also be the case with European Heidelbergensis.
In fact it is still possible that these individuals represent some sort of admixture between older and newer layers of human expansion. But there is no clear answer yet. What is clear is that no Neanderthals have these mitochondrial sequences but others closer to those of H. sapiens – and this is the most puzzling part in fact. 
But one thing is clear: the World is much bigger than just Europe, and that was also the case back in Paleolithic times. Our answer may well lay under the sands of some tropical desert, the waters of the sea or whatever other place in Asia or Africa.
Even if we’d find the “missing link”, so to say, we might not be able to discern it as such without genetic sequencing and that is often not even possible at all. However this pioneer research, as well as its precursors on a bear also from Atapuerca and a 700,000 years old horse (the true record of ancient DNA recovery), give us some hope of getting an improved, even if sometimes perplexing, understanding of the complexity of the human adventure.
 

300,000 year old wooden spears found in Germany

Warning: while the findings are correctly reported for what they are, they seem to be very old news, not from 2008-12 but from 1994-98 (h/t to Eurologist). It’s possible that the opening of a new museum next year triggered the press release, which is in any case unacceptably misleading.
However as the data is valid and the findings interesting in their own right, I won’t delete this entry.
One of the Schöningen spears
Eight wooden spears and remains of many large mammals have been found in an abandoned mine in Schöningen (Lower Saxony, Germany). The area was underwater before the mine explotation began what explains (because of low oxygen) the exceptional preservation of the weapons, though to have been made by Homo heidelbergensis, such as the contemporaneous specimen from Steinheim, the direct ancestor of Neanderthals.
The bones of large mammals — elephants, rhinoceroses, horses and lions — as well as the remains of amphibians, reptiles, shells and even beetles have been preserved in the brown coal. Pines, firs, and black alder trees are preserved complete with pine cones, as have the leaves, pollen and seeds of surrounding flora.
Another findings from the last several years of research in this site are a water buffalo, a well preserved aurochs, as well as other artifacts, bones and wood – all them apparently from more recent periods.

Source: Science Daily.

 

Homo heidelbergensis spoke fluently

That is the conclusion of the Atapuerca researchers based on the structure of the hyoid bone, a critical part of our sound managing anatomy.

Abstract

The present study presents new data on the abilities of Homo heidelbergensis
to produce and perceive the sounds emitted during modern human spoken
language. The pattern of sound power transmission was studied through
the outer and middle ears in five individuals from the Sima de los
Huesos, four chimpanzees and four modern humans. The results were then
used to calculate the occupied bandwidth of the outer and middle ears,
an important variable related with communicative capacities. The results
demonstrate that the Atapuerca SH hominins were similar to modern
humans in this aspect, falling within the lower half of the range of
variation, and clearly distinct from chimpanzees. Specifically, the
Atapuerca SH hominins show a bandwidth that is slightly displaced and
considerably extended to encompass the frequencies that contain relevant
acoustic information in human speech, permitting the transmission of a
larger amount of information with fewer errors. At the same time, the
presence of a complete cervical segment of the spinal column associated
with Cranium 5 from the Sima de los Huesos middle Pleistocene site
(Sierra de Atapuerca, Spain) makes it possible to estimate the vocal
tract proportions in Homo heidelbergensis for the first time.
The results demonstrate that it is similar to the reconstructed vocal
tract in the La Ferrassie 1 Neandertal individual, which has been
suggested to have been capable of producing the full range of sounds
emitted during modern human spoken language. These results in the
Atapuerca (SH) hominins are consistent with other recent suggestions for
an ancient origin for human speech capacity.

Reconstruction of Miguelón, a H. heidelbergensis from Atapuerca, who, according to Manuel Ansede[es], died cursing his luck and the pain caused by the dental infection that killed him

Source: Pileta de Prehistoria[es].