Category Archives: mtDNA

East African mtDNA charts at Ehio Helix

There’s a (thankfully) growing interest in African genetics, both because of its importance for the origin of Humankind as a whole and also for its more direct relevance for Africans and people of recent African descent elsewhere. Therefore I can’t but emphasize again the great work that Ethio Helix blog is doing in this aspect.
Today Ethio Helix gifts us with a most informative visual synthesis of East African mtDNA in form of bar charts. These are extremely interesting because of the wild array of lineages that this African region has, including quite significant amounts of less frequent lineages like L4, L5 or L6, or also the more extended but still worth studying L0 (and of course L2 and L3, as well as the occasional L1).
So I strongly recommend you to take a look. If you have any problems with the graphs (Google seems a bit buggy on them, he says), I solved them by mere zooming out (some sort of white layer was obscuring the rightmost part of them).

Update: it does not work well with Chrome (slow on Windows, does not work at all on Ubuntu) but it works perfect with Firefox.

A complementary Y-DNA chart is linked at this older post.

Posted by on December 9, 2013 in African genetics, mtDNA, population genetics


The Mal’ta aDNA findings

The recent sequencing of ancient DNA from the remains of a Central Siberian young boy, corresponding to the Gravettian site of Mal’ta, West of Lake Baikal, dated to c. 24,000 years calBP, has caught the interest of many anthropology enthusiasts. During my hiatus of more than two months, most people who asked me to retake blogging with an specific request, talked of these findings. Let’s see:
Maanasa Raghavan et al., Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature 2013. Pay per viewLINK [doi:10.1038/nature12736]


The origins of the First Americans remain contentious. Although Native Americans seem to be genetically most closely related to east Asians1, 2, 3, there is no consensus with regard to which specific Old World populations they are closest to4, 5, 6, 7, 8. Here we sequence the draft genome of an approximately 24,000-year-old individual (MA-1), from Mal’ta in south-central Siberia9, to an average depth of 1×. To our knowledge this is the oldest anatomically modern human genome reported to date. The MA-1 mitochondrial genome belongs to haplogroup U, which has also been found at high frequency among Upper Palaeolithic and Mesolithic European hunter-gatherers10, 11, 12, and the Y chromosome of MA-1 is basal to modern-day western Eurasians and near the root of most Native American lineages5. Similarly, we find autosomal evidence that MA-1 is basal to modern-day western Eurasians and genetically closely related to modern-day Native Americans, with no close affinity to east Asians. This suggests that populations related to contemporary western Eurasians had a more north-easterly distribution 24,000 years ago than commonly thought. Furthermore, we estimate that 14 to 38% of Native American ancestry may originate through gene flow from this ancient population. This is likely to have occurred after the divergence of Native American ancestors from east Asian ancestors, but before the diversification of Native American populations in the New World. Gene flow from the MA-1 lineage into Native American ancestors could explain why several crania from the First Americans have been reported as bearing morphological characteristics that do not resemble those of east Asians2, 13. Sequencing of another south-central Siberian, Afontova Gora-2 dating to approximately 17,000 years ago14, revealed similar autosomal genetic signatures as MA-1, suggesting that the region was continuously occupied by humans throughout the Last Glacial Maximum. Our findings reveal that western Eurasian genetic signatures in modern-day Native Americans derive not only from post-Columbian admixture, as commonly thought, but also from a mixed ancestry of the First Americans.

Haploid lineages
The Mal’ta boy, MA-1, carried distinct yDNA R* and mtDNA U* lineages. While both are clearly related to those dominant in Europe and parts of Asia (West, South) nowadays, they are also distinct from any specific dominant lineage today.
R* (yDNA) is neither R1 nor R2 but another distinct branch of R. This kind of R(xR1, R2) is most rare today and found mostly in and around NW South Asia. Following Wikipedia, this “other R” is found in:
  • 10.3% among the Burusho
  • 6.8% among the Kalash
  • 3.4% among the Gujarati
However I must say that I recall from old discussions that some R(xR1) is also found among Mongols and some North American Natives. I would have to find the relevant studies though (maybe in an update).
U* (mtDNA) is also quite rare today but has been found in Swabian Magdalenian hunter-gatherers, as well as in some Neolithic samples, although it may well be a totally different kind of U* (I could not discern the specific markers in the paper nor the supplementary materials and it must be reminded that the asterisk only means “others”).
Autosomal DNA
The study also shows some statistical inferences from the autosomal (or nuclear) DNA of the Mal’ta boy:
Figure 1 [b & c]
b, PCA (PC1 versus PC2) of MA-1 and worldwide human populations for which genomic tracts from recent European admixture in American and Siberian populations have been excluded19.
c, Heat map of the statistic f3(Yoruba; MA-1, X) where X is one of 147 worldwide non-African populations (standard errors shown in Supplementary Fig. 21). The graded heat key represents the magnitude of the computed f3 statistics.

Here we can appreciate that MA-1 is closest to Native Americans but still rather intermediate between them and South and West Eurasians. Interestingly East Asians are quite distant instead, suggesting that MA-1 was still not too much admixed with that continental population, unlike what happens with Native Americans, who are essentially East Asian in the autosomal and mtDNA aspects. So this kid appears to be some sort of a “missing link” in the Paleolithic ethnogenesis of Native Americans.

Figure 2 | Admixture graph for MA-1 and 16 complete genomes. An admixture graph with two migration edges (depicted by arrows) was fitted using TreeMix21 to relate MA-1 to 11 modern genomes from worldwide populations22, 4 modern genomes produced in this study (Avar, Mari, Indian and Tajik), and the Denisova genome22. Trees without migration, graphs with different number of migration edges, and residual matrices are shown in Supplementary Information, section 11. The drift parameter is proportional to 2Ne generations, whereNe is the effective population size. The migration weight represents the fraction of ancestry derived from the migration edge. The scale bar shows ten times the average standard error (s.e.) of the entries in the sample covariance matrix. Note that the length of the branch leading toMA-1 is affected by this ancient genome being represented by haploid genotypes.
Even if I am not too keen of TreeMix, in this case the results seem consistent.
We can appreciate here that a sample of Native Americans (the Karitiana, maybe not as “pure” as the Xavantes but still very much so) show up in a different branch from MA-1, reflecting their overwhelmingly East Asian ancestry, mostly by the maternal side (mtDNA). MA-1 instead hangs from the South-West Eurasian branch, soon after the split between South Asians and West Eurasians. Both have extremely drifted branches, surely indicating the small size of their founder populations, typical of the Far North. 
In addition to this basic tree, two admixture events are signaled: one is the already known Denisovan (H. erectus?) weak one into Australasian Natives (represented by Papuans) and the other one, quite more intense, is the one hanging from upstream of MA-1 to Native Americans (Karitiana), reflecting the partial South-West Eurasian ancestry of Native Americans (noticeable also in their dominant paternal ancestry: haplogroup Q). 
The fact that the admixture signal stems from quite upstream of MA-1 indicates that this boy (or rather his relatives) were not direct ancestors of Native Americans in any significant way but rather a different branch from the same trunk. Probably proto-Amerindians were already in this period at the North Pacific coasts, not sure if in Beringia or around Okhotsk or what but certainly they had already separated from the Mal’ta population.
What did we know of Native American genesis before this finding?
There are three principal lines of evidence:
  1. Y-DNA, which among Native Americans is essentially haplogroup Q (plus some C3, which is from NE Asia). By phylogenetically hierarchical diversity, haplogroup Q must have coalesced in West or Central Asia (or maybe South Asia?), very possibly in or near Iran. The NE Asian and Native American branches are clearly derived, even if more important numerically today.
  2. mtDNA, which among Native Americans is essentially from NE Asia (A, C, D), middle East Asia (B) but also in a small amount from West Asia (X2). 
  3. Archaeology: we can track, more or less directly, the proto-NAs by means of following the Upper Paleolithic sequence in Siberia and nearby areas. 
    1. C. 47,000 years ago (calBP) H. sapiens with Aurignacoid technology (i.e. linked to West Eurasian earliest Upper Paleolithic) reached Altai, displacing the Neanderthals to the Northern fringes of the district.
    2. C. 30,000 years ago, Upper Paleolithic (“mode 4”) technology with roots in Altai reached other parts of Siberia, Mongolia and North China, from where it expanded eastwards and southwards gradually in a process of, probably, cultural diffusion. 
    3. By c. 17,000 years ago they were already in North America and c. 15,000 years ago in South America. In the LGM they were probably in Beringia already (but this is only indirectly attested so far). 
So we already had a good idea about the origins of Native Americans: their ultimate roots, at least patrilineally, seem to be in Altai (where they were part of the wider West Eurasian colonization at the expense of Neanderthals with Aurignacian-like technology and dogs). Then, probably around 30,000 years ago they expanded eastwards through Siberia and maybe nearby areas, entering in intense and intimate contact with the already existent East Asian populations, with whom they admixed once and again, mostly by the female side. 
It would seem therefore that their society was already patrilocal because otherwise their patrilineages would have just got dissolved among the locals and would have never reached Beringia nor America in such dominant position.
Overall this is the quite clear notion that I have on Native American earliest genesis and for me there is no reasonable doubt about this narrative (except maybe in the fine details). However I must reckon that some individuals have reacted very negatively against it. But no matter how much they yell, I fail to see their arguments. 
How does this new finding affects this narrative?
It simply confirms it with further evidence. By 24,000 calBP the proto-NAs were surely already, as I said before, in NE Asia close to the Pacific coasts, so this Mal’ta population is a branch left behind in their migration (plus whatever new inflows from the West, which we can’t evaluate). The very low affinity level with East Asians, in spite of its quite Eastern location, shows that early East Asians had not yet reached, at least in significant numbers, so far North. If they had, they probably did only at more eastern longitudes, probably near the sea, where resources were more plentiful.
In other words: the first Central Siberians were of South+West Eurasian stock and the current East Asian genetic and phenotype hegemony in that area reflects post-LGM flows, mostly lead by yDNA N1. 
Early Native Americans were the product of admixture of these earliest Siberians with NE Asians, admixture that surely happened East of Lake Baikal, although the exact details are still unclear. 
What does MA-1 say about the West?
His mtDNA is generally consistent with other common U-derived lineages found in West Eurasian Upper Paleolithic, so not much other than he was somehow related, what is confirmed by autosomal analysis. 
His yDNA is more interesting maybe, nonetheless because it is probably the oldest sequence of this kind but also because it belongs to haplogroup R. It certainly discards whatever “molecular clock” guesstimates for R that are shorter than this site’s age but on its own it is not able to set a real age other than a bare minimum. 
So for example Eupedia‘s estimate of 29 Ka for R as such could still be valid, although I would say that extremely unlikely. 
Indirectly however it does say something by confirming the overall narrative of Native American origins as above and that means that Eupedia’s estimate of a mere 24 Ka age for haplogroup Q is almost certainly wrong by a lot. 
Using that tree, we would have to at least double the age of Q in order to fit with the Altai narrative (which begins at c. 47 Ka ago), what, extrapolating, implies an age for R of at least 58 Ka. I have estimated some 48 Ka of age for R1 and 68 Ka for P, so it makes good sense after these so necessary corrections. The exact ages we may never know but the approximate ages should be something like these. 
And that’s about all I can say. More in comments (and/or updates) if need be.

Update (Dec 6): R* and P* (and other rare clades) among Central Asians

A reader sent me copy of the study by Wei-Hua Shou et al. (2010) titled Y-chromosome distributions among populations in Northwest China identify significant contribution from Central Asian pastoralists and lesser influence of western Eurasians, published by Nature (doi:10.1038/jhg.2010.30).

While it is not the bit of info I was recalling above, it does add some information about unmistakable R(xR1,R2) and P(xQ,R) among Central Asian populations (from P.R. China territory). In detail:

  • R* is found in 5/31 Tayiks, 1/41 Kazakhs and 1/50 Uyghurs.
  • P* is found in 1/31 Tayiks and 1/43 Kirgizes. 

Also of interest should be the presence of:

  • Q(xQ1) in  8/35 Dongxiang (a Mongol ethnicity), 1/45 Kirgizes and 1/50 Tu (another Mongol ethnicity).
  • F(xG,H,I,J,K) in 2/32 Yugu (Yugurs, a distinct Uyghur sub-ethnicity), 2/41 Kazakh, 1/31 Tayiks and 1/50 Tu.
  • K(xN,O,P) in  32/533 total (i.e. 6% in Easternmost Central Asia), among which are most notable: 9/50 Uyghurs, 6/23 Uzbeks, 6/27 Bao’an (another small Mongol ethnicity), 3/32 Xibo (a Tungusic ethnicity), 2/32 Yugu and 2/5 Mongols. I guess that it is possible that this is a distinct K subclade, although it can well be either part of MNOPS (NO*?) or also belong to LT (L?).
  • R2 in 1/31 Tayiks and 2/27 Bao’an.

Basque and other European origins according to ancient mtDNA

This is a (partly shortened) version of an article I wrote recently in Spanish language for Ama Ata.
For reasons of the variegated methodology used by the various researchers this comparison across time and space has to be simplified. Still it is a valuable insight on the demographic changes produced in the Neolithic and later on in three European regions: Germany, Portugal and the Basque Country. 
As you surely know already, the results of archaeogenetic sequencing in Central Europe have produced quite perplexing results: not just the Neolithic wave seems to have caused major changes but also this one was victim of similarly radical later changes in the demography. Visually:

The first period when we see an mtDNA pool similar to the modern one is already in the Late Bronze Age. However we lack data for all the early and middle Bronze Age and the data of the late Chalcolithic already points to the components of this modern pool being present, albeit in a very fragmented form. If anything there was still excess of L(xR), i.e. N(xR). 
This late Chalcolithic and Bronze Age knot of Central European demographic history is still to be solved. But something we can already say for sure: the Neolithic wave was of dramatic consequences in this region but itself was wiped out by later, still ill understood, secondary waves.
This area is not so well documented, however the data we do have still provide a very interesting sequence of the demographic history of SW or West Iberia. Visually again:

One of the problems here is, quite evidently, that sequencing only the HVS-I region is not at all enough to identify some very important haplogroups, particularly H. We can reasonably think however that most or even all of the R* sequences are actually H.
We see some but not-so-radical changes with the arrival of Neolithic: some apparent decrease of U (halved) and L(xR), a +33% growth of H and first detection of HV0 (probably V). However these changes seem to have been partly countered by Chalcolithic, plausibly by means of blending between first farmers and more purely aboriginal populations. Overall I am very much tempted to think that the arrival of Neolithic to (South and Central) Portugal only caused mild demic changes. 
This fact, together with the extremely high frequencies of haplogroup H and the key role played by SW Iberia in the formation of Dolmenic Megalithism, as well as their pivotal role in Bell Beaker, including the existence of a major civilization (Zambujal, VNSP), the first one ever in Atlantic Europe, makes this area highly suspect as a possible origin for the spread of mtDNA H in Western Europe to the frequencies that we find today (c. 40-50%).
However we have only very limited archaeogenetic data from other Atlantic Megalithic regions and in general from Megalithic burials and it is at least possible that Armorica (Brittany, West France) or Denmark and the nearby Low Germany regions played important roles in this spread, which we see so dramatically exemplified in the German Bell Beaker sample. 
When the finger points to the Moon, the fool looks at the finger. Portugal could be the Moon but it may just be the finger, so I will remain cautious at this stage of research. Whatever the case it does seem to me that Megalithism is a likely source of that excess H (Bell Beaker being just the finger here, almost for sure).
I must add that there seem to be some important demic changes since Chalcolithic in Portugal. Tentatively I will attribute them to the intrusive SW Iberian “horizons” (proto-Tartessian?) and/or the Luso-Celtic invasions of the Iron Age. 
Basque Country
My main aim in all this compilation was, as in a sense in all my diving into prehistoric research for so many years now, to find an answer to the mystery of the origin of Basques and Basque language. 
In the last few years we have been blessed with some important and revealing archaeogenetic research in this area, and therefore I could build also an informative graph for the Basque Country:

Very synthetically, I think that we can see here, much as in Portugal, some not too radical changes with the Neolithic arrival, and then relative stability until present day. This is coherent with the Basque Country not having suffered effective Indoeuropean invasions, unlike Portugal.
However I strongly feel the need to look at the fine detail in the Basque Neolithic transition, because it has some interesting question marks:

Seen as that, it would seem like the Neolithic-induced demic change was more important in Navarre and less in the Western Basque Country. However the two Ebro basin sequences (both Fuente Hoz and Los Cascajos) are very high in U* and low in U5, which is so far the only U subclade sequenced in the Paleolithic of the Basque-Cantabrian area. At this point I do not really know how to interpret this fact nor even what kind of U sublineage is that one.
What I do know is that, on one side, the Biscay-Gipuzkoan area seems to have been initially unaffected by Neolithic demic waves and that the Paternabidea sequence is very very similar to modern day Basque average (and even more in its own sub-region).
It is very possible that the Basque periphery, notably the Ebro banks, suffered more intense demic changes than the core Basque areas of the piedmont. However, when compared with other European regions (very especially Central Europe) the Basque genetic pool seems quite stable since Neolithic times. 
Is Basque language Neolithic?
Even if genetics and language need not to be tightly related, of course, the question of the origin of Basque language and the proposed Vasconic language family, believed to have been spoken in much of Europe at some point in Prehistory, are indeed related to the genetic origin of the Basque people. 
There are four main models for the origin of Basque and Vasconic:
  1. Magdalenian (Paleolithic) origin in the Franco-Cantabrian region some 17-15,000 years ago (incl. possible sub-waves like Tardenoisian/geometric Epipaleolithic).
  2. Neolithic origin.
  3. Megalithic origin.
  4. More or less recent (Iron Age?) arrival, defended by mostly by the fanatics of Indoeuropean continuity. 
We can safely discard #4 only based on archaeology but the genetic aspect seems to add even more weight to this dismissal, after all it is Indoeuropean speaking peoples the ones which show obvious signs of demic change, sometimes very dramatic, not Basques.
Personally, and with due caution, I would also cast doubt on #1, partly because the Vasconic substrate area seems to include strongly many parts of Italy like Sardinia, in principle unaffected by the Magdalenian expansion, and I would also include at least to some extent parts of the Balcans (for example the Ibar river in Kosovo). 
So I am rather inclined for model #2, i.e. that Vasconic was the language family spoken by European Neolithic peoples with roots in Thessaly (pre-Sesklo→Mediterranean Neolithic, proto-Sesklo→Balcano-Danubian Neolithic). I cannot of course exclude a possible re-expansion of some of those languages within the Atlantic Megalithic phenomenon, which I would deem responsible of the expansion of much of mtDNA H up to modern frequencies, however I doubt this one is the source because it is difficult to explain the presence of Vasconic in many pockets in which Megalithism was at best very secondary or did not exist at all (for example most of the Ancient Iberian area, Sardinia, the Balcans, etc.)
So my tentative proposal is that there was a root Vasconic spoken some 9000 years ago in Thessaly (Northern Greece), which split (as per archaeology) in two branches:
  • Southern or Western Vasconic (Impressed-Cardium Pottery and related cultures, including the Megalithic urheimat in Portugal). 
  • Northern or Eastern Vasconic (Red-White Painted Ware in the Balcans and later Linear Pottery in Central Europe).
Basque, ancient Sardinian, Iberian and the hypothetical lingua franca associated to Megalithism would belong to Southern Vasconic. Danubian Neolithic peoples would have spoken Northern Vasconic instead but, as we can see, they were eventually all but wiped out by secondary arrivals from West and East. Even the very Balcanic core areas of Thessaly, Macedonia and Serbia also suffered an invasion early on by peoples with Beige-Black pottery (Vinca-Dimini) surely related to Tell Halaf. So the main survivor to the Metal Ages was Southern (Western) Vasconic, which was then wiped out (excepted Basque) by the Indoeuropean invasions of Celtic and Italic peoples. 
We can still see fossils however. One of my favorite examples is the Latin particle bi- (as in bilateral, bilingual, etc.), which seems derived from Vasconic bi (two, at least in modern Basque) and unrelated to PIE *dwos. Also the English words kill and ill, which seem related to Basque verb hil(-du) (pronounced /hill/ or /ill/ and meaning to die or to kill, depending on how you conjugate it). Again both English terms do not have any apparent PIE origins, although they may derive from proto-Germanic. These are just examples, of course, there seems to be much more to be researched.
Appendix: detail of the data and bibliography: LINK.

Are ancient mtDNA sequences from Syria of Indian origin?

Honestly, I have all kind of doubts but that’s what a new study claims on the basis of just a few hypervariable sequence markers:
Henry W. Witas, mtDNA from the Early Bronze Age to the Roman Period Suggests a Genetic Link between the Indian Subcontinent and Mesopotamian Cradle of Civilization. PLoS ONE 2013. Open accessLINK [doi:doi:10.1371/journal.pone.0073682]
The authors sequenced the HVS-I (and nothing else!) of the mtDNA of four individuals from Tell Ashara and Tell Ashaik sites of ancient Terqa and Kar-Assurnasirpal (Syria, Euphrates river). And then they proceded to establish a bit unlikely comparisons with East and South Asian M sublineages, of which only one is present today in the region.
The sequences are (supp table 3, all numbers +16,000 and counting from the CRS, i.e. H2a1 underived, GenBank: NC_012920):
  • TQ28F112: 223-234
  • MK13G117: 223-234-311
  • TQ28F256: 223-234-270
  • MK11G107: 223-266-289
The first two are attributed to M9, the third one to M61 (a quite rare haplogroup) and the last one to M4b (the only one to be found in West Asia nowadays, specifically in Arabia Peninsula).
Now what do the markers actually say? All are highly variable sites and independently can be found in many lineages, however most typically:
  • 223 describes R, hence counting from the CRS, it should mean L(xR).
  • 311 describes L3, hence counting from the CRS it should mean L(xL3).

So all four should be L(xR) and MK13G117 looks like L(xL3).
Exceptions for 311 (consistent with the sequence above): L3b1a3, M4’65’67, M10, M29’Q, M31a1, M56, M57 and M74. However M9 does not make it because to begin with it needs a transition at the 362 site. 
The authors got carried away by their own pre-conceptions and the marker 234, shared by three of the four sequences. However, while that marker is found in M9a, it also needs the 362 marker, which they both lack. So they are not M9 but something else. 

More plausible candidates could be, at least for TQ28F112, M30d/e or M49.
As for the rest, there are no modern sequences, at least via PhyloTree (but neither within the study’s own comparisons), that are good correlates. All we can say with certainty is that they are L3(xR), except in the case of MK13G117, which can only be described as  L(xR). 
Maybe if they had tried sequencing the coding region, as in my understanding, they MUST (destroying or damaging valuable ancient bones to do this mediocre research is not anymore justified, if it ever was), they would have got useful and informative results. Now we just have again another frustrating set of nearly useless HVS-I sequences, which can only be ambiguous in the vast majority of cases.
Ah, by the way, there’s no obvious correlation between these Metal Ages’ sites and ancient Sumerians, of course. Even if the lineages are South Asian by origin or affinity, which is possible but by no means demonstrated, they would at most suggest a relation between the Mid-Upper Euphrates and that area. The region was under intermittent Sumerian, Amorite, Babylonian, Kassite and Assyrian control but mostly is a distinct country within the greater Mesopotamian area.
Notice that previous research (ref.) in the same area but from the Neolithic (PPNB) period has found (also HVS-I) large amounts of mtDNA K, some H and also some L3(xR).

[Note: edited because some ethnographic assumptions I made initially seem to be quite wrong].


Posted by on September 12, 2013 in aDNA, Bronze Age, Iron Age, Kurdistan, mtDNA, Syria, West Asia


Ukraine’s Neolithic and Bronze Age ancient mtDNA

A doctoral thesis on ancient Ukrainian mtDNA has recently become freely available (h/t Kristiina):
Jeremy R. Newton, Ancient Mitochondrial DNA From Pre-historic Southeastern Europe: The Presence of East Eurasian Haplogroups Provides Evidence of Interactions with South Siberians Across the Central Asian Steppe Belt. Grand Valley State University (thesis), 2011. Freely availableLINK
The key element of this study is table 1:

Location of sites (fig. 3):

Notice that the “Kurgan sites” (D1.8, L8 and L15) are not from the first Kurgan arrivals but rather from a late layer, surely Srubna culture, which is generally believed to be proto-Cimmerian.
The most striking element probably is the presence of relatively high frequencies of mtDNA C since Neolithic times. However this is not inconsistent with previous findings (Desarkissian 2011) of mtDNA C (C1) among NE European Epipaleolithic hunter-gatherers, surely precursors of modern Finnic peoples. It means that the Siberian element of East Asian affinity today best preserved among Uralic peoples, was present in Europe before Neolithic and that it had an impact (21%) even in presumably non-Uralic populations such as Epigravettian derived Dniepr-Don.
This in turn may well explain the subtle Siberian affinity elements sometimes apparent in much of Northern and Central Europe, because these Eastern European peoples made in turn significant demic impacts in those areas, first with the Pitted Ware culture (clearly derived from Dniepr-Don: similar pottery and burial styles) that affected parts of the Southern Baltic, via Belarus, and later with the Kurgan waves of Indoeuropean-speaking invaders.
Maybe a bit more intriguing is the coincidence of C4a lineages in all the three kurgans of SW Ukraine. It may be just a coincidence or a very specific ethnic provenance of the princesses of that sub-group but the thesis argues for these being direct descendants of the Neolithic C4a lineage found in Ya34. I must say I am skeptic but it is not totally impossible. If real, it would imply that all C4a3 and C4a6 haplogroups (at least) are of Eastern European coalescence, what I find a bit difficult to accept, to say the least – but who knows?
An element in favor of such model is that neither of these C sublineages seems to be present in West Siberian ancient mtDNA, while no Oriental lineages altogether have been found in Central Asia before the Iron Age.
See also:

Posted by on September 12, 2013 in aDNA, Bronze Age, European origins, mtDNA, Neolithic, Ukraine


Hungarian ancient DNA and the origins of Central European Neolithic

Davidski leads me to this interesting article where the Neolithic mtDNA of what is now Hungary is detailed far beyond of what I used to know:

Eszter Banffy, German-Hungarian bioarchaeological research project in the Archaeological Institute of the Research Centre for the Humanities, Hungarian Academy of Sciences, Hungarian Archeology, 2013. Open accessLINK 1, LINK 2
Note: the second link, even if unofficial (Banffy’s page) provides (at least in my browser) with a better formatted PDF.

Most interesting is this map:

previous CE data

The results are roughly similar to those obtained for early Neolithic Germany. For comparison, to the right there is a pie chart I built recently with the German data (plus one Austrian and another Eastern Hungarian samples, which were already known – H and N1a respectively). 

The main difference is the much greater presence of U(xK) in Germany, surely remnant of pre-Neolithic peoples. Otherwise it is quite similar to the West Hungarian pie (consider R* as most likely H, just that untested for the relevant markers). No wonder if we consider that West Hungary (along with nearby areas in Austria, Slovakia and Moravia) is at the origin of the Western Linear Pottery Culture, also known as Danubian Neolithic or LBK. 

However the Eastern Linear Pottery of the Tisza basin is generally understood to be at the origin of LBK itself, being somehow transitional between Starcevo (part of the Red & White Painted Pottery complex, originated at Sesklo) and LBK. And we do see some differences with the Western group, notably the Tisza group has much less H (but more H5), less J and also some less N1a.

Lacking by the moment ancient DNA data from Starcevo, Sesklo and other Balcan Neolithic groups at the origin of European Neolithic, we are limited to speculation but I suspect that the greater amount of haplogroup H was incorporated from pre-Neolithic peoples. After all H has been found in great amounts in Paleolithic Iberia (Portugal, Cantabria and Basque Country) and (to a lesser extent) also in Karelia, what clearly indicates that it was present in the European continent before the agricultural revolution, being the Swabian and Baltic cases (no H found to date) probably exceptional in this aspect. On the other hand H was found but only at low levels in Neolithic Kurdistan (15%, up to 23% incl. R*), suggesting it did not come from West Asia (unlike what is probably the case of K, reaching 53% in the Kurdish tells and never reported in Paleolithic Europe). 

A similar but stranger case may be that of N1a, found to belong to an exclusively European subclade, nowadays very rare. It’s quite plausible that this lineage was restricted to some Central European pockets in the Paleolithic and found occasion for expansion in the Neolithic… only to dramatically recede later on.

It is very worth mentioning that the profile of Eszter Banffy at has a lot of papers (many in Hungarian or German but many others also in English) with focus on Central European and Balcanic Neolithic.

Central European farmers, but also Danish "hunter-gatherers" had domestic pigs

It’s often difficult to discern in the archaeological record wild boar remains from those of domestic pigs. Luckily archaeogenetics can solve the problem, sometimes producing striking results.
Ben Krause-Kyora et al., Use of domesticated pigs by Mesolithic hunter-gatherers in northwestern Europe. Nature Communications 2013. Open accessLINK [doi:10.1038/ncomms3348]


Mesolithic populations throughout Europe used diverse resource exploitation strategies that focused heavily on collecting and hunting wild prey. Between 5500 and 4200 cal BC, agriculturalists migrated into northwestern Europe bringing a suite of Neolithic technologies including domesticated animals. Here we investigate to what extent Mesolithic Ertebølle communities in northern Germany had access to domestic pigs, possibly through contact with neighbouring Neolithic agricultural groups. We employ a multidisciplinary approach, applying sequencing of ancient mitochondrial and nuclear DNA (coat colour-coding gene MC1R) as well as traditional and geometric morphometric (molar size and shape) analyses in Sus specimens from 17 Neolithic and Ertebølle sites. Our data from 63 ancient pig specimens show that Ertebølle hunter-gatherers acquired domestic pigs of varying size and coat colour that had both Near Eastern and European mitochondrial DNA ancestry. Our results also reveal that domestic pigs were present in the region ~500 years earlier than previously demonstrated.

The most striking result is surely not the demonstration of pigs being in Central Europe a few centuries than previously confirmed but that Ertebølle hunter-gatherers of Denmark had them as well, quite radically casting doubt on their status as hunter-gatherers and placing them fully in the Neolithic context, even still rather marginal and peripheral. 
Figure 1: Map depicting the location of the archaeological Sus samples from which mtDNA haplotypes were obtained.
Samples were recovered from Neolithic LBK, post-LBK and Mesolithic Ertebølle sites dated between 5500 and 4000 cal BC. Each symbol corresponds to a single sample (triangle, square and circle). Domestic (triangle) and wild (square) pigs discussed in the text are labelled; circles represent Sus specimens of unknown domestication status. The red colour indicates the European haplotypes C and A, and yellow the Near Eastern haplotypes Y1 and Y2.