Category Archives: Megalithism

SW Iberian plaques from the Chalcolithic

A new study gives us the opportunity to learn about the mysterious SW Iberian plaques from the Chalcolithic period.
Daniel García Rivero & Daniel J. O’Brien, Phylogenetic Analysis Shows That Neolithic Slate Plaques from the Southwestern Iberian Peninsula Are Not Genealogical Recording Systems. PLoS ONE 2014. Open access LINK [doi:10.1371/journal.pone.0088296]


Prehistoric material culture proposed to be symbolic in nature has been the object of considerable archaeological work from diverse theoretical perspectives, yet rarely are methodological tools used to test the interpretations. The lack of testing is often justified by invoking the opinion that the slippery nature of past human symbolism cannot easily be tackled by the scientific method. One such case, from the southwestern Iberian Peninsula, involves engraved stone plaques from megalithic funerary monuments dating ca. 3,500–2,750 B.C. (calibrated age). One widely accepted proposal is that the plaques are ancient mnemonic devices that record genealogies. The analysis reported here demonstrates that this is not the case, even when the most supportive data and techniques are used. Rather, we suspect there was a common ideological background to the use of plaques that overlay the southwestern Iberian Peninsula, with little or no geographic patterning. This would entail a cultural system in which plaque design was based on a fundamental core idea, with a number of mutable and variable elements surrounding it.

Figure 1. Engraved plaques from the Iberian Peninsula.
Valencina de la Concepción, Sevilla, Spain (Museo Arqueológico de
Sevilla [MAS]); b, S. Geraldo, Montemor-o-Novo, Évora, Portugal (Museo
Nacional de Arqueologia de Portugal [MNAP]); c, Monsaraz, Reguengos de
Monsaraz, Évora (MNAP); d, Mora, Évora (MNAP); e, Jabugo, Aracena,
Huelva, Spain (MAS); f, Ciborro, Monte-o-Novo, Évora (MNAP); g, Marvão,
Portalegre, Portugal (MNAP); h, Estremoz, Évora (MNAP); and I, Pavia,
Mora, Évora (MNAP).

Rather than dwelling in the central discussion of the study, which is to empirically discard the genealogical hypothesis (for which it is surely best to read the paper as such), my main interest is to share this not often seldom discussed Chalcolithic phenomenon which is limited to SW Iberia (i.e. Southern Portugal and nearby areas of Spain). This study gives us the opportunity of not just knowing it but also contemplate its unity and diversity from a large number of specimens. 

Fig. 2 –  General design of the plaques.
The dates of the “plaque idols”, as they are often known in the literature, range from c. 2650 to c. 2100 BCE[see note below], corresponding to the development of the first Iberian (and West European) civilizations (fortified towns) in the area, which began c. 2600 BCE, with two main centers around modern Lisbon (Zambujal) and Almería (Los Millares) but that also knew of other such towns especially in Southern Portugal. All that in the context of dolmenic Megalithism, with the introduction of new burial designs such as the tholos (beehive tomb) or the artificial cave, innovations that may have been restricted for some elites. 

Important note (update Feb 25): the dates given in the previous paragraph are uncalibrated (i.e. raw BP minus 1950). The calibrated dates are quite older: between c. 3500 and 2600 “actual years” BCE, as you can check in table 1. They still overlap with the known dates for Los Millares (c. 3200–2300 BCE) and its “Almeriense” precursor culture but less so with Zambujal (c. 2600-1300 BCE, subject to possible revisions). My apologies for the confusion.

The most dense area, and seemingly also the most diverse, for this kind of findings is the southern part of Évora district (Central Alentejo, near the Guadiana River, known as River Ana in Antiquity), a mostly flat country with some low hills (the highest peak in the district has 600 m.) and a scattered natural forestry of corks and holm oaks. It was once known as Portugal’s “bread basket” and was surely of relevance in the Neolithic and Chalcolithic period, especially in relation with the development of the influential burial style of dolmens or cairns (known as mamoas in Portuguese), later partly replaced by tholoi.

Typical Alentejo landscape (CC by Alvesgaspar)

The plaques’ phenomenon is anyhow found through all the Southern half of Portugal, with limited penetration into Spanish Extremadura. Another important region was the Lisbon Peninsula, which was almost certainly a more important civilization and geopolitical center, with notable urban development in this period and becoming a major center of Bell Beaker.
Its main city, Zambujal (Torres Vedras) still barely researched was connected to the Atlantic Ocean by a 10-14 km long marine branch that was silted (tsunami?) at the end of its occupation (end of Bronze Age?) Hence we are talking of a major city (for the standards of the time at least) which lasted for more than a thousand years and whose influence encompassed once at the very least much of Southwestern Europe (and, if we accept that it was at the origins of the Bell Beaker, then all Western Europe and parts of North Africa).

Ruins of Zambujal (source)
Reconstruction of the known area of Zambujal, possibly just an acropolis (source)
Figure 3. Character states used in the analysis.

Back to the plaques, I don’t feel able to say anything about them that is not in the paper (read it and browse the many figures, please), except for one thing: some of the characteristics of certain plaques compare well with other “religious” iconography from the Southern Iberian Peninsula in Chalcolithic times.

For example plaque A in figure 1 clearly has the “oculado” (eyed) symbol found in many other artistic elements of the time and believed to represent some divinity and very likely representing the eyes of an owl (suspected to have been an ancient divinity or divine symbol in much of Europe, and found also in India).

“Oculado” symbol in a bowl from Los Millares (CC by José-Manuel Benito Álvarez)
An “oculado” idol (CC by Luis García (Zaqarbal))
Proto-Chorintian owl (public domain, credit: Jastrow)

Other plaques with a more defined head (plaque G in fig. 1, NK2 in fig. 3), remind also to the Millarense “cruciform” idols:

(CC Museo de Almería)
Diverse types of idols from Chalcolithic Iberia (source)
So I would think that all or at least many may well represent the same kind of divinity, possibly related to the origins of several more historical deities such as Athena (Greece) or Mari (Basque Country). 

Neolithic peoples from Britain and Ireland ate a lot of dairies and nearly no fish

I just discussed again the genetic sweep that apparently has happened in Europe after the Neolithic strongly favoring the selection of alleles that allow the digestion of lactose (the sugar present in milk and often in other dairies) by adults. However our knowledge of ancient European genetics is probably not sufficient (nor that of lactose tolerance genetics) and in any case the question remains, where did those lactase persistence (LP) alleles come from if all ancient Neolithic remains test negative?
An interesting possibility is opened by another recent study, not at all genetic in nature but rather bio-archaeological:
Lucy J. E. Cramp et al., Immediate replacement of fishing with dairying by the earliest farmers of the northeast Atlantic archipelagos. Proceedings of the Royal Society B 2014. Open accessLINK [doi:10.1098/rspb.2013.2372]


The appearance of farming, from its inception in the Near East around 12 000 years ago, finally reached the northwestern extremes of Europe by the fourth millennium BC or shortly thereafter. Various models have been invoked to explain the Neolithization of northern Europe; however, resolving these different scenarios has proved problematic due to poor faunal preservation and the lack of specificity achievable for commonly applied proxies. Here, we present new multi-proxy evidence, which qualitatively and quantitatively maps subsistence change in the northeast Atlantic archipelagos from the Late Mesolithic into the Neolithic and beyond. A model involving significant retention of hunter–gatherer–fisher influences was tested against one of the dominant adoptions of farming using a novel suite of lipid biomarkers, including dihydroxy fatty acids, ω-(o-alkylphenyl)alkanoic acids and stable carbon isotope signatures of individual fatty acids preserved in cooking vessels. These new findings, together with archaeozoological and human skeletal collagen bulk stable carbon isotope proxies, unequivocally confirm rejection of marine resources by early farmers coinciding with the adoption of intensive dairy farming. This pattern of Neolithization contrasts markedly to that occurring contemporaneously in the Baltic, suggesting that geographically distinct ecological and cultural influences dictated the evolution of subsistence practices at this critical phase of European prehistory.

Not only fish consumption was pretty much abandoned in Britain and Ireland with the arrival of Neolithic (only recovered under Viking influence many millennia later) but the most striking fact is that it was replaced by milk as main source of proteins. 
This fact, considering that farmers studied in Central Europe and Iberia have systematically tested negative for lactase persistence, really opens an avenue for the possible origins of this nutritional adaptation because it is most unlikely that they were such notable dairy consumers without the corresponding digestive ability (even cheese may be harmful to lactose intolerant people unless it is aged, while yogurt was almost certainly not known yet in Europe). 
While the evidence comes from the Atlantic Islands, it is worth to notice that their chronologically late Neolithic has its origins in the much older agricultural cultures of NW France, another blank spot in the ancient DNA map of Europe. Nowadays NW France is high but not particularly high in this phenotype but SW France and Basques have among the highest LP scores (both phenotype and rs4988235(T) genotype) in Europe, together with the Atlantic Islands and Scandinavia. 
Then again it is worth recalling that one of the first areas where the rs4988235(T) allele is found is in the southern areas of the Basque Country, with clear signs of two different populations (one lactose tolerant and the other lactose intolerant) being still in the first stages of contact and mostly unmixed.
This leads us to the issue of Atlantic Megalithism (tightly associated to Atlantic Neolithic) and its still unsolved, but likely important, role in the conformation of the modern populations of Europe. 
Whatever the case the first farmers of the islands were heavy dairy consumers, although in Britain (but not in Ireland and Man) they eventually derived into heavy meat eaters later on:

Figure 1.

Prevalence of marine and dairy fats in prehistoric pottery determined from lipid residues. (af) Scatter plots show δ13C values determined from C16:0 and C18:0 fatty acids preserved in pottery from northern Britain (red circles), the Outer Hebrides (yellow circles) and the Northern
Isles of Scotland (blue circles), dating to (a) Early Neolithic, (b) Mid/Secondary expansion Neolithic, (c) Late Neolithic, (d) Bronze Age, (e) Iron Age and (f) Viking/Norse. Star symbol indicates where aquatic biomarkers were also detected. Ellipses show 1 s.d. confidence ellipses
from modern reference terrestrial species from the UK [19] and aquatic species from North Atlantic waters [13]. (gi) Maps show the frequency of dairy fats in residues from Neolithic pottery from (g) Early Neolithic, (h) the Middle Neolithic/Secondary expansion and (i) Late Neolithic. Additional data from isotopic analysis of residues from Neolithic southern Britain (n = 152) and Scotland (n = 104) are included [19,20].

The data of this study also suggests that the so much hyped high-meat “Paleolithic diet” is more of a Late Neolithic (Chalcolithic) thing, with the real hunter-gatherers of Europe being more into fish in fact.

Correction: I wrongly reported the main European lactase persistence SNP as rs13910*T, when it is in fact rs4988235(T) (already corrected in the text above) This was caused by the nomenclature used in the Sverrisdóttir paper, where it refers to it as -13910*T, which must be some other sort of naming convention. Thanks to Can for noticing.


Neolithic and Chalcolithic demographics of Western and Northern Europe

Somehow I missed this important study on the Neolithic and Chalcolithic demographics of Europe, as inferred from the archaeological record (h/t Davidski):
Stephen Shennan et al., Regional population collapse followed initial agriculture booms in mid-Holocene Europe. Nature Communications 2013. Open accessLINK [doi:doi:10.1038/ncomms3486]


Following its initial arrival in SE Europe 8,500 years ago agriculture spread throughout the continent, changing food production and consumption patterns and increasing population densities. Here we show that, in contrast to the steady population growth usually assumed, the introduction of agriculture into Europe was followed by a boom-and-bust pattern in the density of regional populations. We demonstrate that summed calibrated radiocarbon date distributions and simulation can be used to test the significance of these demographic booms and busts in the context of uncertainty in the radiocarbon date calibration curve and archaeological sampling. We report these results for Central and Northwest Europe between 8,000 and 4,000 cal. BP and investigate the relationship between these patterns and climate. However, we find no evidence to support a relationship. Our results thus suggest that the demographic patterns may have arisen from endogenous causes, although this remains speculative.

The most interesting aspect is maybe that the (apparent) demographic changes are detailed for many regions of Europe, but first let’s see the general outlook for the whole area surveyed (Western and Northern Europe, Iberia excluded):

Figure 2: SCDPD-inferred population density change 10,000–4,000 cal. BP using all radiocarbon dates in the western Europe database.
Colored arrows and their annotations are mine.

I decided that it was important to mark the main cultural episodes for reference.
1st Neolithic refers to Impressed-Cardium and Linear Band Pottery cultures, which arrived almost simultaneously to Germany and France (of the surveyed areas), although the Rhône-Languedoc Neolithic is a few centuries earlier than the arrow, which has been standardized to 7500 BP.
Atlantic Neolithic refers to the quite belated arrival of Neolithic to Britain, Ireland and Northern Europe (standardized at 6000 BP). This process was quickly followed and tightly associated with the widespread cultural phenomenon of Dolmenic Megalithism. It is most interesting that the main deviation from the pattern of regular growth concentrates in this period and is clearly positive.
Corded Ware culture (Indoeuropean consolidation in Central and Northern Europe) affected only to Germany and Denmark-Scania within the surveyed regions. It was followed by a more widespread subcultural phenomenon known as Bell Beaker, which almost invariably cases manifests within pre-existent locally rooted cultures. Neither seems to be correlated with demographic expansions in the general overview.
Now let’s take a look at the regional graphs:

Figure 3: SCDPD-inferred population density change 8,000–4,000 cal. BP for each sub-region.
Colored arrows, excepted the blue ones (which mark the local first Neolithic), are mine and mark general pan-European initial chronologies (not local!) for Megalithism, Corded Ware and Bell Beaker in those regions where they had some clear influence.

Here we can appreciate that:
Atlantic Neolithic and its associated Megalithic phenomenon are clearly related to notable demographic expansions in Ireland, Scotland, South England, Denmark and Scania. Megalithic influence may also be associated with some more irregular growth in South and Central Germany but rather not in France nor West Germany. A contemporary weak and irregular growth in North Germany (Brandenburg, Mecklemburg and Schlewig-Holstein) may be correlated with Funnelbeaker (with roots in Denmark) and the first Kurgan development of Baalberge and successor cultures (with roots in Eastern Europe), which would eventually evolve into Corded Ware.
Corded Ware only seems related to clear demographic growth in Jutland (and less resolutely in Scania). Bell Beaker is only linked with clear demographic growth in Ireland (and much more weakly in South England and Central Germany), while elsewhere it is rather associated with decline.
For the exact extension of the various regions as defined for this study, see fig. 1 (map).
As provisional conclusion, it seems obvious to my eyes that the most important demographic growth processes were the various Neolithic cultures but that the Atlantic Neolithic (and associated Megalithism) was particularly dynamic. In contrast Indoeuropean-associated cultural phenomena had a much weaker impact, with some localized exceptions, and are generally associated with local demographic decline instead, at least judging from the archaeological record.
See also:

Revisiting the demographics of Northern and Central Europe in the Neolithic and Chalcolithic periods

Stimulated by the discussion at another entry, yesterday I made a little graph, almost a mnemonic, on the demographics of Northern European Neolithic and Chalcolithic, based on academic data which I discussed back in 2009.
This is the result:

The very simplified graph is nothing but a version of another one, used in 2009 (and reproduced below), which in turn is an annotated and composite version extracted from two different studies (references also below).
For convenience I have marked the millennia marks at the bottom (meaning 5000, 4000, 3000 and 2000 BCE, from left to right) while the unmarked vertical scale ranks from 0 to 100 (marked by the lowest and highest dots, not the frame, which is actually outside of the graph itself). The dots mark population level at any time as proportion of the maximum (100) in discrete intervals rounded up/down to 10 ppts and taken at intervals of 250 years. Notice that I ignored monuments in the case of Britain, only considering the habitation and other productive sites.
Not sure if it will result useful to you but it did help me to visualize the demographics of Northern Europe in these four millennia of surely dramatic population changes. If you don’t like this version the more detailed original double graph is below, scroll down.
Something quite obvious is that while Danubian Neolithic first caused an important population expansion, it later declined to quite low population levels, maybe because of climatic cooling and the exhaustion of the lands because of poorly developed agricultural techniques. 
This late Danubian collapse lasted for about a millennium, when (1) Funnelbeaker (TRBK) in Denmark, (2) Megalithism in Britain and Denmark especially (later also in parts of Germany) and (3) Kurgan cultures in Poland (later also in Germany and Denmark) seem to have brought with them very notable demographic expansions.
But decline seems to set on again all around at the end of the Chalcolithic period, much more notably in the continent (in Poland the rate of archaeological findings decays to zero!) than in Britain and especially Denmark. 
And now indeed the original “verbose” graph:

And the sources:

Bronze Age Sweden imported its copper

Dienekes’ Anthropology Blog mentions this week several papers that dwell in the nature of the Nordic Bronze Age, specifically in Southern Sweden. It turns out that the copper used by the Nordic smiths was not local in almost all cases but imported from elsewhere in Europe (Sardinia, Iberia, Auvergne, Tyrol and British Islands) or even West Asia (Cyprus). This imported copper was exchanged by essentially amber, it seems, an export product of the Nordic area since the Chalcolithic. Nothing is said about the tin needed to make bronze but most likely it came from SW Britain and/or NW Iberia, as these were the two main producers of the strategic metal in old times.
Of the three mentioned papers only one is freely accessible, and also quite interesting to read:
Nils-Axel Mörner & Bob G. Lind, The Bronze Age in SE Sweden Evidence of Long-Distance Travel and Advanced Sun Cult. Journal of Geography and Geology 2013. Open accessLINK [doi:10.5539/jgg.v5n1p78]


The Bronze Age of Scandinavia (1750-500 BC) is characterized by the sudden appearance of bronze objects in Scandinavia, the sudden mass appearance of amber in Mycenaean graves, and the beginning of bedrock carvings of huge ships. We take this to indicate that people from the east Mediterranean arrived to Sweden on big ships over the Atlantic, carrying bronze objects from the south, which they traded for amber occurring in SE Sweden in the Ravlunda-Vitemölla–Kivik area. Those visitors left strong cultural imprints as recorded by pictures and objects found in SE Sweden. This seems to indicate that the visits had grown to the establishment of a trading centre. The Bronze Age of Österlen (the SE part of Sweden) is also characterized by a strong Sun cult recorded by stone monuments built to record the annual motions of the Sun, and rock carvings that exhibit strict alignments to the annual motions of the Sun. Ales Stones, dated at about 800 BC, is a remarkable monument in the form of a 67 m long stone-ship. It records the four main solar turning points of the year, the 12 months of the year, each month covering 30 days, except for month 7 which had 35 days (making a full year of 365 days), and the time of the day at 16 points representing 1.5 hour. Ales Stones are built after the same basic geometry as Stonehenge in England.

The other two are sold under mercantile schemes:
Johan Ling et al., Moving metals or indigenous mining? Provenancing Scandinavian Bronze Age artefacts by lead isotopes and trace elements. Journal of Archaeological Science 2013. Pay per viewLINK [doi:10.1016/j.jas.2012.05.040]
I.B. Gubanov, Grave Circle B at Mycenae in the Context of Links Between the Eastern Mediterranean and Scandinavia in the Bronze Age. Archaeology, Ethnology and Anthropology of Eurasia 2012. Pay per viewLINK [doi:10.1016/j.aeae.2012.08.011]
Ling’s paper is the one indicating that Swedish copper had exotic Atlantic and Mediterranean origins, while Gubanov’s highlights that amber from the Baltic is found in one Mycenaean grave (specifically Grave Circle B) and not in any known Minoan (Eteocretan) one. For him this means that bronze metallurgy and other associated elements like the quadruple spiral motif arrived with Mycenaean sailors in the Bronze Age. 
Grave Circle B is actually older than the much more famous Grave Circle A (the pseudo “Agamenon’s Tomb”), although both belong to the Late Helladic I period (c. 1550-1500 BCE).

(public domain, credit: myself)
This chronology is interesting because it was roughly in those dates when SE Iberian El Argar civilization began its phase B, characterized by Greek influence in burials (pithoi). It is worth mentioning here that while these are the first findings of amber from Nordic Europe in the Eastern Mediterranean, such jewels were common in Iberia since c. 3000 BCE (beginnings of Chalcolithic period). 
It would seem therefore clear that Iberia was a pivotal area in this purported Scandinavian-Greek exchange. The question is: did the early Greek sailors actually reached Scandinavia themselves or were they rather just receiving products by mediation of Iberian traders with a long tradition of Atlantic (and Mediterranean) navigation?
It is probably a hard to answer question. But the studies point to some relevant cues, like the Swedish drawings of ships with rams and the presence of the (originally Mediterranean?) motif of the quadruple spiral, so similar to the Basque lauburu (four heads) icon (probably related to both the svastika and triskel). 

Figure 3.B. the spiral ornament from Sweden and Greece

This spiral icon is not Mycenaean in origin, having been found in Minoan Crete and Megalithic Malta (right), which are respectively older and a lot older than the Mycenaeans. The motif is not even exclusive of Europe, with very similar concepts found for example in the pottery of Western Mexico.
So while the similitude is striking, this evidence is not conclusive on its own. 
The Cypriot copper evidence alone is not enough evidence of Mycenaean
presence in Scandinavia, very especially as Cyprus seems important, long
before the Mycenaeans in the East-West Mediterranean connections.
Cyprus used their own script (probably used for the native Eteocypriot
language) up to the 4th century BCE and while Mycenaean presence in the
island seems attested in the very late Bronze Age, the island was not a
Mycenaean center at all but rather was under Hittite and Ugaritic
influence instead.  
So we are left with the claim of rammed ships being coincident with the Mycenaean period. However what I find searching around are dates of c. 1700 BCE (Norway), very early in the Mycenaean chronology and some two centuries older than the single amber finding in Mycenae. It could indeed be a Mycenaean influence but how conclusive is it?
I have a vague memory of a Mycenaean ship (?) found years ago in the waters of Denmark or Germany, however I can’t find anything searching online. Does anyone know something more detailed on the matter? This would be key evidence but I cannot trust my memory alone. 
So there seems to be some sort of interaction between the Eastern Mediterranean and Scandinavia but, as far as I can tell, specifically Mycenaean presence in the Far North is circumstantial rather than conclusive. 
Besides the issue of purported trade with the Mediterranean, there are some other interesting elements in Mörner & Lind 2013, notably the description of the Ales Stones ship-shaped megalith (“sun ship”) as an astronomical calendar:

Not sure how new this is but it is a very interesting thing to know, right?

Update (May 17): Dispatches from Turtle Island has some interesting and realistic calculations on how long would take an ancient ship to sail from Greece to Sweden and back (c. 112 days, he estimates).


Spring near Stonehenge occupied since Epipaleolithic

(CC by Jeffrey Pfau)
The spiritual relevance of Amesbury may well stem from a much older time than Neolithic or Chalcolithic. Recent research at a spring not far from Stonehenge has got radiocarbon dates of c. 7500 years ago, some three millennia before the building of the world-famous monument, and up to 4,700 BP, when the megalith was already in use.
The low budget research project led by David Jacques of Open University, who had spotted the site, known as Vespasian’s Camp, just a mile north of Stonehenge, in air photos a decade ago. The site had never been researched before.
The findings imply some sort of continuity between the Epipaleolithic and Late Neolithic (i.e. Chalcolithic), although the details have yet to be systematized. 
Source: BBC News (includes video).

Huge palisade enclosure in Wales

The small village of Walton (Powys, Wales) was, it seems, long ago a ceremonial center for the ancient peoples of Britain between 3800 and 2300 BCE. At the very least it had a huge palisaded enclosure that could have accommodated five buildings of the size of the London Olympic Stadium within its circa 1200 posts, each said to be 4 m. high. 

Digital reconstruction of the ceremonial site
Besides the structure itself, which has been investigated for decades, pottery, flint tools and food remains have been found. Apparently the site hosted some kind of regular festival of unknown characteristics. 
Source: Wales Online.